Subresultants, Sylvester sums and the rational interpolation problem

نویسندگان

  • Carlos D'Andrea
  • Teresa Krick
  • Ágnes Szántó
چکیده

We present a solution for the classical univariate rational interpolation problem by means of (univariate) subresultants. In the case of Cauchy interpolation (interpolation without multiplicities), we give explicit formulas for the solution in terms of symmetric functions of the input data, generalizing the well-known formulas for Lagrange interpolation. In the case of the osculatory rational interpolation (interpolation with multiplicities), we give determinantal expressions in terms of the input data, making explicit some matrix formulations that can independently be derived from previous results by Beckermann and Labahn.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sylvester double sums and subresultants

Sylvester double sums versus subresultants given two polynomials A and B first notion symmetric expression of the roots of two polynomials second notion defined through the coefficients polynomials main result of the lecture these two notions are very closely related (idea due to Sylvester [S]) see details and complete proofs in [RS]. 1 Definitions and main result. A and B two finite families o...

متن کامل

Double Sylvester sums for subresultants and multi-Schur functions

J. J. Sylvester has announced formulas expressing the subresultants (or the successive polynomial remainders for the Euclidean division) of two polynomials, in terms of some double sums over the roots of the two polynomials. We prove Sylvester formulas using the techniques of multivariate polynomials involving multi-Schur functions and divided differences. Introduction and statement of the main...

متن کامل

An elementary proof of Sylvester's double sums for subresultants

In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester’s formula was also recently proved by Lascoux and Pragacz by using multi-Schur functions and divided differences. In this paper, we provide an elementary proof that uses only basic properties of matrix multiplication and Vandermonde determi...

متن کامل

Sylvester's double sums: An inductive proof of the general case

In 1853 J. Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. In 2009, in a joint work with C. D’Andrea and H. Hong we gave the complete description of all the members of the family as expressions in the coefficie...

متن کامل

ar X iv : m at h / 07 01 72 1 v 3 [ m at h . A C ] 1 0 O ct 2 00 7 Sylvester ’ s Double Sums : the general case

In 1853 Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. A question naturally arises: What are the other members of the family? This paper provides a complete answer to this question. The technique that we devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2015